Diesel Exhaust Particles Activate the Matrix-Metalloproteinase-1 Gene in Human Bronchial Epithelia in a ß-Arrestin-Dependent Manner via Activation of RAS

Jinju Li¹, Andrew J. Ghio², Seung-Hyun Cho³,

Constance E. Brinckerhoff⁴, Sidney A. Simon^{1, 5}, Wolfgang Liedtke*^{1, 6}

1 Department of Neurobiology, Duke University, Durham, NC 27710, USA

2 U.S. Environmental Protection Agency, UNC-Chapel Hill Campus, Chapel Hill, NC 27514, USA

3 U.S. Environmental Protection Agency RTP Campus, Research Triangle Park, NC 27711, USA

4 Departments of Medicine and Biochemistry, Norris Cotton Cancer Center,

Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA

5 Center for Neuroengineering, Duke University, Durham, NC 27710, USA

6 Department of Medicine/ Division of Neurology, Duke University, Durham, NC 27710, USA

* corresponding author

Dr. Wolfgang Liedtke, Department of Medicine, Box 2900, Duke University, Durham, NC 27710, USA; tel. 919 684 0058, fax 919 684 6514, e-mail: wolfgang@neuro.duke.edu

SUPPLEMENTAL MATERIAL

Supplementary Figures

<u>Figure 1:</u> MMP-1 Western blotting on BEAS-2B cell protein extract. The left-hand side panel shows the blot of protein extract from BEAS-2B cells, 10 μ g total protein per lane, for control stimulation using media, P90 carbon control particles vs. DEP (100 μ g/mL). The right-hand side panel shows densitometric evaluation of relative protein abundance of MMP-1, normalized for ß-actin, for n=3 samples, with increased expression for DEP stimulation; * denotes statistically significant increase vs. controls (p<0.05).

<u>Figure 2:</u> Secreted MMP-1 protein, as measured by ELISA, and specific MMP-1 cleavage activity, correlate significantly. MMP-1 cleavage activity was measured using a commercially available assay, see Methods. Upon specific MMP-1 cleavage, a FRET signal can be monitored, correlating well with secreted amounts of MMP-1.

<u>Figure 3:</u> *MMP-1* promoter driven reporter genes, depicted above, illustrate that the -1607GG polymorphism is associated with a robustly increased transcriptional activation, depicted in bar diagrams below. The strongest activation is observed for the 2.9kB promoter, with longer promoters reducing activity. – For a thorough bio-informatic analysis of the "tobacco-response element", -4.4 to -2.9kB, see (Mercer et al. 2008).

<u>Figure 4:</u> Specific inhibition of p38 and JNK MAP-kinases, using SB203580 and SP600125, do not down-regulate activation of the *MMP-1* gene in BEAS-2B cells; reporter gene assays for both -1607 polymorphisms is shown in the upper panel, MMP-1 secretion below. For specific inhibition of JNK, reporter-gene activity is significantly increased for the 1G polymorphism in response to DEP (100μg/mL), secreted MMP-1 is higher, but this increase does not reach the level of statistically significant difference.

<u>Figure 5:</u> A time-course of phospho-ERK immunofluorescence in response to DEP stimulation is depicted, using confocal laser-scanning microscopy. A peak of the nuclear signal for the 30' time-point is apparent, at which time-point phospho-ERK and phospho-MEK Western blotting has been conducted, depicted below.

Supplementary Material, Figure 1

Supplementary Material, Figure 2

Supplementary Material, Figure 3

BEAS-2B cells

Supplementary Material, Figure 4

BEAS-2B cells 24h time-point

Supplementary Material, Figure 5

anti-phospho-ERK immunocytochemistry, confocal laser scanning

